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1. INTRODUCTION

This is a supplementary document for the article “Fixing Boundary Violations: Applying
Constrained Optimization to the Truncated Regression Model.” It is comprised of three
parts: model information, technical notes on numerical issues, and instructions for replica-
tion. Model information includes the mathematical detail of the constrained optimization
problem (COP) for the simulation and replication studies in the main text. Technical notes
on numerical issues explains how to handle two numerical problems that result in non-
convergence. The instructions for replication section explains how to replicate all of the

findings in the article.
2. MODEL INFORMATION

We first present the model specification for the three simulation studies. Set x* as the

covariate matrix after being centered, including the constant.
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Given the above information, we can implement the sequential quadratic programming
algorithm to solve the truncated regression model as a COP problem. As for the replication

of Hellwig and Samuels’s models, we fixed the covariate matrix at the minimum, and the



interaction terms are recalculated by using the covariate values after being fixed. The new

covariate matrix is marked as 2. We use the notion as stated in the appendix of the article.

The model specification is
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Notice that the definitions of 27 and g,‘?}n are different from the simulation model due to
the dummy variables (see the article’s Appendix section). The rest of the model information
is the same except ¢ () and dc (vy)/0v .

The difference of ¢ (7) results from different centering methods. Thus, there are some

corresponding changes in dc (7)/07 , and they are all associated with the dummy variables.
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3. TWO NUMERICAL ISSUES

Two numerical problems sometimes occur and cause non-convergence. The first problem is
related to outliers of the predicted value for the location parameter. When the estimated
location parameter is far smaller than the lower limit or far greater than the upper limit,
the definite Gaussian integral in the denominator of the probability density function will
approach zero, and hence, lead to a singularity problem. The second problem is about the
magnitude of the step size in each numerical iteration. In some cases, the step size generated
by the inverse Hessian is overdriven by the scale parameter, and thus, too large to generate
eligible parameter estimates. Through a proper adjustment to the Hessian, the step size can
be under control, and thus, reaching an admissible solution becomes possible.

To illustrate the first problem, we refer to the objective function (negative loglikelihood)

specified in the constrained optimization problem
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When the following two conditions both exist, }b — az:‘,@| > 50 and }a — m;“,@" > 50, D;
will approach zero, and thus, the natural logarithm of D; will approach negative infinity. The
value of the loglikelihood function is, therefore, dominated by a few large contributions from
those outliers. The same issue, on the other hand, does not pose a problem to the second
term of the loglikelihood function. The contribution of the square standardized deviation is
relatively milder so that a few outliers do not seriously distort the result.
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density value to almost zero
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and thus, outliers do not cause great disturbance in a particular iteration. Since the occur-

f (ilxiB, o) =

— 0,

rence of outliers is associated with inadmissible beta estimates, the number of outliers will
reduce to zero when later iterations generate admissible solutions or reach convergence. The
main effect of setting D; = V2mo is to retain a smooth convergent sequence of parameter
estimates in numerical optimization.

The second problem is about the proper control of the step parameter d by adjusting the
Hessian. Without loss of generality, the following discussion only assumes one independent
variable in the truncated regression model. Both z and (8 are used as a scalar. The essential

rule of Newton’s method in achieving sequential convergence to the minimum is
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where the negative gradient represents the steepest direction that the parameter estimate

should move. And the inverse Hessian indicates how far the move should be by the rate of
T

quadratic convergence. Let the step parameter d"®) = (df/f), df,k)> represent the difference

of the parameter estimate from the kth to (k4 1)th iteration, thus
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By multiplying the last term of 9 (—log L)/93* with a factor, we can control the step
parameter d, at the same level while reducing the step parameter dg. To see why this is the

case, we first assume
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If we multiply ¢, with a factor 7, the new Hessian becomes
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With a few manipulations, we derive the new step parameter dj, which is always smaller

2The following items specify the gradient and the Hessian for the simplest truncated regression model
without the constant. The specification can be easily extended to the multivariate context by adding variable
indicators.



than the original step parameter dg if 7 > 1.
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With the above knowledge, we can reduce the step parameter dj arbitrarily while keeping the
step parameter d; at a certain level by increasing the factor 7. This technique of adjusting
the Hessian is important in finding an admissible solution during the numerical analysis. In
general, the original Hessian tends to generate too large a step and causes non-convergence
as the number of covariates increases. The convergent rate would be slower when a smaller
step dj is in use. Most importantly, the final results of parameter estimation do not differ
much if 7 is chosen within a limited range. In the replication studies, we set 7 as 14 and 4

for Model I and II, respectively.

4. REPLICATION

There are three stages of statistical analysis in this article. The first is to replicate the three
political studies and demonstrate their out-of-bounds violations. The second includes three
simulation tests to compare TRM and TRMCO. The third is to apply the TRMCO model

to the Hellwig and Samuels’s regression analysis.
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4.1. Three Political Studies

The first part in replicating three political studies is executed in the Stata environment.

Save all the data files under your designated directory. The default is set “C:\”.

Hellwig and Samuels 2007

OLS’s out-of-bounds violation for Model I:
e use “C:\HellwigSamuelsCPS2007.dta”, clear

e regress incvotet incvotet1 dgdp tradeshr gdpxtradeshr electype gdpxelect presrun enlp

income regafrica regasia regcee reglatam, cluster(code)
e predict yhatl
e sum yhatl
TRM’s out-of-bounds violation for Model I:

e truncreg incvotet incvotetl dgdp tradeshr gdpxtradeshr electype gdpxelect presrun

enlp income regafrica regasia regcee reglatam, cluster(code) 11(0) ul(100)
e predict yhat2
e sum yhat2

OLS’s out-of-bounds violation for Model II:

e regress incvotet incvotetl dgdp grosscap gdpxgrosscap electype gdpxelect presrun enlp

income regafrica regasia regcee reglatam, cluster(code)
e predict yhat3

e sum yhat3
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TRM’s out-of-bounds violation for Model II:

e truncreg incvotet incvotetl dgdp grosscap gdpxgrosscap electype gdpxelect presrun

enlp income regafrica regasia regcee reglatam, cluster(code) 11(0) ul(100)
e predict yhat4

e sum yhat4

Hansford and Gomez 2010

OLS’s out-of-bounds violation in the F-test for excluded instruments:

e set mem H00m

use “C:\HansfordGomez _Data.dta”, clear

xtreg GOPIT DemVoteShare2_3MA Yr52 Yr56 Yr60 Yr64 Yr68 Yr72 Yr76 Yr80 Yr84

Yr88 Yro6 Yr92 Yr2000 DNormPrcp KRIG RainGOPI Rain_ DVS23MA, fe robust

predict yhath

sum yhatb

TRM’s out-of-bounds violation in the F-Tests for excluded instruments:

use “C:\HansfordGomez_MeanbyGroup.dta”, clear

truncreg gopit demvoteshare2_3ma yrb2 yrb56 yr60 yr64 yr68 yr72 yr76 yr80 yr84 yr88

yr96 yr92 yr2000 dnormprep_krig raingopi rain_dvs23ma, robust 11(-100) ul(100)

predict yhat6

e gen origin_gopit=yhat6+mean_gopit

e sum origin_gopit
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Acemoglu et al. 2008

Before we start replications, run the following commands:
e set mem 500m
e use “C:\income_demo_byears.dta”, clear
e tsset code numeric year_numeric
e sort code_numeric year_numeric
e tab year, gen (yr)
e tab code, gen(cd)

e set matsize 800

OLS’s out-of-bounds violation for the pooled model:
e reg fhpolrigaug L.(fhpolrigaug lrgdpch) yr* if sample==1, cluster(code)
e predict yhat7

e sum yhat7

TRM’s out-of-bounds violation for the pooled model:
e truncreg thpolrigaug L.(fhpolrigaug Irgdpch) yr* if ssmple==1, cluster(code) 11(0) ul(1)
e predict yhat8

e sum yhat8

OLS’s out-of-bounds violation for the fixed-effect model:
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e reg fhpolrigaug L.(fhpolrigaug lrgdpch) yr* cd* if sample==1, cluster(code)

e predict yhat9
e sum yhat9
TRM’s out-of-bounds violation for the fixed-effect model:

e truncreg fhpolrigaug L.(fhpolrigaug Irgdpch) yr* cd* if sample==1, cluster(code) 11(0)
ul(1)

e predict yhat10

e sum yhat10

4.2. Simulation Tests

All three simulations are executed in the Stata environment for OLS and TRM, and in the

Matlab environment for TRMCO. All the files are saved in the directory labeled “OLS _simulationl,”

“TRM_simulation1,” “TRMCO _simulationl,” - - -. The simulation datasets are “trialdatal.mat,”

“trialdata2.mat,” and “trialdatad.mat” generated by “samlpingl.m,” “sampling2.m,” and

“sampling3.m” in Matlab. For OLS and TRM, we separate the dataset into 10 subsamples for

each simulation test, and it is labeled as “samplel.dta,” “sample2.dta,”- - - “sample30.dta”

for the three tests.

Simulation tests for OLS
e do “C:\OLS_simulation1\olsregl.do”
e do “C:\OLS_simulation2\olsreg2.do”

e do “C:\OLS_simulation3\olsreg3.do”

Simulation tests for TRM
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e do “C:\TRM_simulation1\truncregl.do”
e do “C:\TRM simulation2\truncreg2.do”
e do “C:\TRM _simulation3\truncreg3.do”

Note that the result files are “ols_resultl.dta,” “truncreg resultl.dta,”---. The coefficient

b3 is the constant.

Simulation Tests for TRMCO and Table 1
o format shortG

e enter “C:\'TRMCO_simulation1\” under the Matlab environment and run “experi-

mentl.m”
e run “getresultl.m”
e display(getstats)

e enter “C:\TRMCO_simulation2\” under the Matlab environment and run “experi-

ment2.m”
e run “getresult2.m”
e display(getstats)

e enter “C:\TRMCO_simulation3\” under the Matlab environment and run “experi-

ment3.m”
e run “getresult3.m”
e display(getstats)

Simulation Tests for Table 2
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e format shortG

e enter “C:\TRMCO _simulation1\” under the Matlab environment and run “adtl.m”
e display(adcoeffl)

e enter “C:\TRMCO _simulation2\” under the Matlab environment and run “adt2.m”
e display(adcoeff2)

e enter “C:\TRMCO _simulation3\” under the Matlab environment and run “adt3.m”

e display(adcoeff3)

4.3. Replications

We replicate Hellwig and Samuels’s (2007) Model I and Model 1T (p.292). Given that the
original model is not strictly linear, the replication result will be slightly different due to
the different centering method. OLS and TRM are implemented in the Stata environment,

whereas TRMCO is executed in the Matlab environment.

Replication of Hellwig and Samuels’s Model I, Table 3
e use “C:\fixmin_Hellwigl.dta”, clear

e regress incvotet incvotetl dgdp tradeshr gdpxtradeshr electype gdpxelect presrun enlp

income regafrica regasia regcee reglatam, cluster(code)

e truncreg incvotet incvotetl dgdp tradeshr gdpxtradeshr electype gdpxelect presrun

enlp income regafrica regasia regcee reglatam, cluster(code) 11(0) ul(100)
o enter “C:\TRMCO _replication1\” under the Matlab environment and run “modell.m”

Replication of Hellwig and Samuels’s Model 11, Table 4

16



e use “C:\fixmin_Hellwig2.dta”, clear

e regress incvotet incvotetl dgdp grosscap gdpxgrosscap electype gdpxelect presrun enlp

income regafrica regasia regcee reglatam, cluster(code)

e truncreg incvotet incvotetl dgdp grosscap gdpxgrosscap electype gdpxelect presrun

enlp income regafrica regasia regcee reglatam, cluster(code) 11(0) ul(100)

e enter “C:\TRMCO _replication2\” under the Matlab environment and run “model2.m”
Translation of Boundary Violations, Table 5

e enter “C:\'TRMCO_replication1\” under the Matlab environment.

e run “load stataresultl.mat”

e run “identify([trmb;trmsig])”

e run “load overall resultl.mat”

e run “load identify(trmcom(1:1:m+2)")”

e enter “C:\TRMCO_replication2\” under the Matlab environment.

e run “load stataresult2.mat”

e run “identify([trmb;trmsig])”

e run “load overall result2.mat”

e run “load identify(trmcom(1:1:m+2)")”
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